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High-order upwind methods for wave equations
on curvilinear and overlapping grids

J. W. Banks and W. D. Henshaw

Abstract In this work we discuss a newly developed class of robust and high-order
accurate upwind schemes for wave equations in second-order form on curvilinear
and overlapping grids. The schemes are based on embedding d’Alembert’s exact
solution for a local Riemann-type problem directly into the discretization [3]. High-
order accuracy is obtained using a single-step space-time scheme. Overlapping grids
are used to represent geometric complexity. The method of manufactured solutions
is used to demonstrate that the dissipation introduced through upwinding is suffi-
cient to stabilize the wave equation in the presence of overlapping grid interpolation.

1 Introduction

Upwind methods for first-order hyperbolic partial differential equations (PDEs)
have been extremely effective at facilitating the simulation of a wide variety of phys-
ical problems. The success of upwind methods can largely be attributed to the in-
corporation of natural dissipation through the embedding of the characteristic wave-
structure of the hyperbolic system into the discretization. Many well-known and
powerful schemes have their roots in these ideas. A partial list includes the Courant-
Isaacson-Rees scheme [10], flux-corrected transport [6], total-variation-diminishing
methods [2] the piecewise-parabolic method (PPM) [9], essentially-non-oscillatory
(ENO) schemes [13], discontinuous Galerkin (DG) approximations [8], and the
weighted-essentially-non-oscillatory (WENO) class of methods [16].
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In a recent paper [3], we extended these powerful ideas to wave equations written
directly in second-order form without the need to recast governing equations as a
system of first-order PDEs. There are numerous potential advantages of solving the
second-order form directly such as fewer dependent variables and fewer constraint
equations. The approach was based on incorporating the well-known d’Alembert so-
lution into the discretization. Following the well estabilished procedure for upwind
treatments for the first-order form, a localized expression of the upwind flux was
derived that enables easy application to a wide class of problems including multiple
dimensions and variable coefficients. In this work we demonstrate the extension of
upwind scheme for the wave equation in second-order form to the cases of curvilin-
ear girds and overlapping grids. As discussed in [1], dissipation free schemes may
exhibit instabilities on overlapping grids due to perturbations from the interpola-
tion formula; these instabilities were found to be naturally suppressed by upwind
schemes for waves equations in first-order form. This property has permitted many
stable overlapping grid capabilities for hyperbolic PDEs (e.g. [14, 5, 1, 4]). In the
current work we demonstrate that upwind methods for the second-order system also
appear to be naturally stable when used with overlapping grids.

2 Governing equations and overlapping grids

Consider the discretization of the scalar wave equation on a domain Ω ,

∂ 2u
∂ t2 = Lu≡ c2

∆u, x ∈Ω , (1)

where x ∈ Rd , u = u(x, t), c is a constant wave speed, and ∆u is the Laplacian
operator in d space dimensions. Appropriate boundary and initial conditions are also
applied. We will discretize (1) using an overlapping grid approach where the overall
domain is covered by an overlapping grid G consisting of a set of component grids
Gk that communicate through interpolation. Such a scenario is depicted in Figure 1
which shows a domain consisting of an annular grid (green) and a rectangular grid
(blue). In the region where these two grids overlap the solution is communicated
from one grid to the other using interpolation. For further details on overlapping
grids refer to [7] and the references therein.

For each component grid we define a smooth mapping x = G(r) from physical
space x to the unit square r ∈ [0,1]d in parameter space. Following the notation
in [15], in the parameter space coordinates the governing equation (1) can be written
in conservative form as

L(u) =
1
J

d

∑
m=1

d

∑
n=1

∂

∂ rm

(
JAmn ∂u

∂ rn

)
, (2)

where
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Fig. 1 Left: an overlapping grid consisting of two structured curvilinear component grids, x =
G1(r) and x=G2(r). Middle and right: component grids for the square and annular grids in the unit
square parameter space r. Grid points are classified as discretization points, interpolation points or
unused points. Ghost points are used to apply boundary conditions.

Amn = c2
d

∑
µ=1

∂ rm

∂xµ

∂ rn

∂xµ

,

and J is the determinant of the Jacobian matrix [∂xi/∂ r j]. Note that in (2) the con-
served quantity is Ju, and the metrics of the mapping enter the equation as variable
coefficients.

As discussed in [15], self-adjoint discretizations of (2) can be developed to ar-
bitrary order for the case of a single component grid. These discretizations have
a compact stencil and are free from numerical dissipation. However, when over-
lapping grids are used the perturbations introduced by the interpolation between
component grids can result in numerical instabilities. In [15] these instabilities were
treated by adding a simple dissipation operator whose coefficients were chose ex-
perimentally and with expert judgement. In [1], a proof was presented showing the
presence of these unstable modes for overlapping grids. The analysis indicated a
form of dissipation operator that would stabilize the schemes against overlapping
grid interpolation. Centered (dissipation free) discretizations of the first-order sys-
tem were also shown to exhibit similar instabilities associated with overlapping grid
interpolation, but the dissipation inherent to standard upwind discretizations for the
first-order system was shown to stabilize the system. The form of dissipation re-
quired to stabilize the wave equation in second-order form against overlapping grid
interpolation has since been shown to be naturally present in “upwind” discretiza-
tions of the second-order system as described in [3]. For this reason, we will develop
upwind discretizations of (2).

2.1 Upwind discretization

Following the approach in [3] we introduce the time derivative of the field quantity
(indicated using a dot as in u̇≡ ∂u

∂ t ), and rewrite the equations as
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∂

∂ t

[
u
u̇

]
=

[
u̇
0

]
+

1
J

d

∑
m=1

∂

∂ rm

[
0

∑
d
n=1 JAmn ∂u

∂ rn

]
. (3)

As in [3] we integrate in time over a time step ∆ t, and produce the formally exact
differential-difference equations

u̇(x, tn+1) = u̇(x, tn)+
∆ t
J

d

∑
m=1

D+rmF u̇
rm(x−

hrm

2
erm , t

n), (4)

u(x, tn+1) = u(x, tn)+∆ tu̇(x, tn)+
∆ t2

J

d

∑
m=1

D+rmF u
rm(x−

hrm

2
erm , t

n). (5)

Here rm is the mth direction in index space, erm is the unit vector in the rm direction,
D+rm is the forward divided difference operator in the rm direction, hrm is the grid
spacing in the rm direction, and the integrals of the fluxes are defined as

F u̇
rm(x, t

n) =
1

∆ t

∫
∆ t

0
f̌rm(x, t

n + τ)dτ, (6)

F u
rm(x, t

n) =
1

∆ t2

∫
∆ t

0

∫
τ

0
f̌rm(x, t

n + τ
′)dτ

′ dτ, (7)

where the upwind flux functions are given by

f̌rm(x+
hrm

2
erm , t

n + τ)≡
d

∑
n=1

ArmJAmn ∂u
∂ rn

(x+
hrm

2
erm , t

n + τ) (8)

+Arm

J
√

Amm

2

(
u̇r+m (x+

hrm

2
erm , t

n + τ)− u̇r−m (x+
hrm

2
erm , t

n + τ)

)
.

In (8) we have introduced the operator Arm which is defined to satisfy the identity
∂w
∂ rm

(x) = D+rm

(
Armw(x− hrm

2 erm)
)

for any sufficiently smooth function w and is

given by the expansion Armw(x, t) = ∑
∞
j=0 α j h2 j

rm
∂ 2 jw
∂ r2 j

m
(x, t). The coefficients α j can

be computed from the identity ζ/2 = sinh(ζ/2)∑
∞
j=0 α jζ

2 j following the approach
described in [11, 12]. Values for the first few coefficients are α0 = 1, α1 =− 1

24 , α2 =
7

5760 , α3 =
31

967680 . As in the description in [3] we use m-point Gaussian quadrature
to evaluate the integrals in (4) and (5). Taylor expansions in space and time are used
to define the quantities in (8) to the desired order. The final result is a single-step
scheme of the desired accuracy. Such a time integration technique is often referred
to as a modified-equation, Cauchy-Kovalevskaya, or Lax-Wendroff time-stepper.

The maximal stable time step of the upwind schemes for each component grid
can be computed exactly assuming constant coefficients (i.e. rectangular grids).
See [3] for details. This bound is applied locally as an estimate for the maximal
stable time step for curvilinear component grids. Such a procedure is similar to
the use of a linearized estimate to determine the time step for computations of the
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Navier-Stokes equations. The time step for the overall simulation is then taken to be
the smallest of the time steps computed over all component grids. The exact form of
the discrete stability bound in multiple dimensions is found to be quite complex. In
addition, the time step assuming constant coefficients is often an overly optimistic
estimate for curvilinear grids. Therefore, we fit a simplified bound (which also gives
a simple explicit expression for ∆ t) of the form

d

∑
m=1

λ
σ
m ≤Λ

σ
max

where λm = maxi(
|Amm|
hrm

)∆ t and the maximum is taken over all grid points. The
coefficients σ and Λmax are determined for each discretization through a normal
mode stability analysis of the linearized constant coefficient problem. Figure 2 gives
the numerical values for these parameters as well as a plot of the bounds in two
dimensions for discretization orders two, four, and six. Note that larger time-steps
can be taken in the higher order schemes compared to the second-order scheme.
Finally, we use an additional safety factor of 0.9 and so the final time step is only
90% of the value computed by taking the minimum allowable over all grids.

order σ Λmax
2 1.35 0.605
4 2.275 1.075
6 1.7 0.93

Fig. 2 At left are coefficients defining the simplified stability bound for the schemes of various or-
ders. At right is a plot showing those stability bounds in two space dimensions. The discretizations
are stable for parameters that lie to the lower left of the appropriate curve.

3 Numerical examples

In this section we present some initial results to demonstrate the accuracy of the
overall approach as well as the stability of the upwind discertizations on overlapping
grids. To this end we present convergence tests using twilight zone solutions, also
known as the method of manufactured solutions, in both two- and three-dimensions.
In this approach an exact solution ue is posed, in this case we choose trigonometric
functions in space and time, and a source term is applied to the governing equations
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so that a solution to the forced system is the presupposed exact solution ue. This
modified system reads

∂ 2u
∂ t2 = Lu+

∂ 2ue

∂ t2 −Lue, x ∈Ω . (9)

For this study we take Dirichlet boundary conditions on physical boundaries with
the exact solution being specified.

3.1 Twilight zone in two space dimensions

Here we investigate the discrete solution of the wave equation on a two-dimensional
unit disk. The exact solution is chosen as ue =

1
2 cos(2πx)cos(2πy)cos(2πt). The

overlapping grid, shown in Figure 3, uses a narrow boundary fitted grid near the
edge of the disk and a large background Cartesian grid over the domain interior.
Figure 3 also shows the solution at the final time t = 0.5. A convergence study is

overlapping grid solution (t = 0.5)
0.5

−0.5

Fig. 3 Left: overlapping grid for the disk. Right: trigonometric twilight zone solution at t = 0.5.

performed on a series of grids of increasing resolution. As discussed in [1], it is more
challenging from a stability perspective to refine the boundary fitted grids keeping
the number of grid lines normal to the boundary fixed; the boundary grids thus
become narrower as the grid is refined. Figure 4 presents results from this study
showing max-norm errors at the final time for the second, fourth, and sixth-order
methods. Convergence at the designed accuracy is demonstrated and there are no
indications of instability. The error field for the fourth-order scheme and the 3rd
refinement grid is also shown in Figure 4. Note that the error magnitude is uniform
across the grid overlap.
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Fig. 4 Left: convergence results for the various schemes. Right: solution error at t = 0.5 for the
fourth order scheme on the 3rd refinement grid.

3.2 Twilight zone in three space dimensions

For three dimensions we perform simulations for a domain consisting of the box
(x,y,z) ∈ [−2,2]× [−2,2]× [−2,2] with a spherical cavity of radius 0.5 in the cen-
ter. The exact solution is chosen as ue = cos(2πx)cos(2πy)cos(2πz)cos(2πt). Fig-
ure 5 shows the simulation geometry and the exact solution at the initial time. Also
shown are results for a max-norm convergence study for the second-, fourth-, and
sixth-order schemes. As in two dimensions, convergence at the designed accuracy
is obtained and there is no evidence of instability associated with the overlapping
grid interpolation.
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Fig. 5 At left are the results of a max-norm convergence test for the various schemes while at right
is the exact solution for the sphere in a box test.
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4 Conclusions

In this work we have extended the upwind approach for second-order wave equa-
tions developed in [3] to curvilinear and overlapping grids. Upwinding is incorpo-
rated through the definition of the numerical flux function by embedding a localized
form of d’Alembert’s exact solution. A high-order accurate single-step space-time
scheme is developed by employing a Cauchy-Kovalevskaya (Lax-Wendroff) proce-
dure. The overall approach is shown to be stable in the presence of overlapping grid
interpolation in two and three space dimensions using the method or manufactured
solutions. Future work includes incorporation of physical boundary conditions, and
optimization of the schemes.
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